Our Roman Space Telescope’s Dish is Complete!
NASA engineers recently completed tests of the high-gain antenna for our Nancy Grace Roman Space Telescope. This observatory has some truly stellar plans once it launches by May 2027. Roman will help unravel the secrets of dark energy and dark matter – two invisible components that helped shape our universe and may determine its ultimate fate. The mission will also search for and image planets outside our solar system and explore all kinds of other cosmic topics.
However, it wouldn’t be able to send any of the data it will gather back to Earth without its antenna. Pictured above in a test chamber, this dish will provide the primary communication link between the Roman spacecraft and the ground. It will downlink the highest data volume of any NASA astrophysics mission so far.
The antenna reflector is made of a carbon composite material that weighs very little but will still withstand wide temperature fluctuations. It’s very hot and cold in space – Roman will experience a temperature range of minus 26 to 284 degrees Fahrenheit (minus 32 to 140 degrees Celsius)!
The dish spans 5.6 feet (1.7 meters) in diameter, standing about as tall as a refrigerator, yet only weighs 24 pounds (10.9 kilograms) – about as much as a dachshund. Its large size will help Roman send radio signals across a million miles of intervening space to Earth.
At one frequency, the dual-band antenna will receive commands and send back information about the spacecraft’s health and location. It will use another frequency to transmit a flood of data at up to 500 megabits per second to ground stations on Earth. The dish is designed to point extremely accurately at Earth, all while both Earth and the spacecraft are moving through space.
Engineers tested the antenna to make sure it will withstand the spacecraft’s launch and operate as expected in the extreme environment of space. The team also measured the antenna’s performance in a radio-frequency anechoic test chamber. Every surface in the test chamber is covered in pyramidal foam pieces that minimize interfering reflections during testing. Next, the team will attach the antenna to the articulating boom assembly, and then electrically integrate it with Roman’s Radio Frequency Communications System.
Learn more about the exciting science this mission will investigate on Twitter and Facebook.
Make sure to follow us on Tumblr for your regular dose of space!